Rekomenduojama, 2021

Redaktoriaus Pasirinkimas

Skirtumas tarp T-testo ir Z-testo

T-testas reiškia vienalytė hipotezės testą, pagrįstą t-statistika, kur žinomas vidurkis, o populiacijos dispersija yra artima iš mėginio. Kita vertus, Z-testas taip pat yra vienalytė testas, pagrįstas standartiniu normaliu paskirstymu.

Paprastai tariant, hipotezė reiškia prielaidą, kuri turi būti priimta arba atmesta. Yra dvi hipotezės testavimo procedūros, ty parametrinis testas ir ne parametrinis testas, kur parametrinis testas grindžiamas tuo, kad kintamieji matuojami intervalo skalėje, o ne parametrinio bandymo atveju laikoma, kad tas pats matuojamas eilės skalėje. Dabar, atliekant parametrų testą, gali būti dviejų tipų bandymai, t-testas ir z-testas.

Šiame straipsnyje bus išsamiai suprantamas T-testo ir Z-testo skirtumas.

Palyginimo diagrama

Palyginimo pagrindasT-testasZ bandymas
ReikšmėT-testas reiškia parametrų testo tipą, kuris taikomas nustatant, kaip dviejų duomenų rinkinių priemonės skiriasi viena nuo kitos, kai dispersijos nėra.„Z-test“ reiškia hipotezės testą, kuris nustato, ar dviejų duomenų rinkinių priemonės skiriasi viena nuo kitos, kai pateikiamas dispersija.
RemiantisStudentų-t pasiskirstymasNormalus skirstinys
Gyventojų dispersijaNežinomaŽinomas
Mėginio dydisMažasDidelis

T-testo apibrėžimas

T-testas yra hipotezės testas, kurį tyrėjas naudoja, kad palygintų kintamojo populiacijos priemones, suskirstytas į dvi kategorijas, priklausomai nuo mažesnio nei intervalo kintamojo. Tiksliau tariant, t-testas naudojamas siekiant ištirti, kaip skiriasi nuo dviejų nepriklausomų mėginių paimtos priemonės.

T-testas seka t paskirstymą, kuris yra tinkamas, kai mėginio dydis yra mažas, o populiacijos standartinis nuokrypis nėra žinomas. T-pasiskirstymo formą labai veikia laisvės laipsnis. Laisvės laipsnis reiškia nepriklausomų stebėjimų skaičių tam tikroje pastabų grupėje.

T-bandymo prielaidos :

  • Visi duomenų taškai yra nepriklausomi.
  • Imties dydis yra mažas. Paprastai imties dydis, viršijantis 30 mėginių vienetų, laikomas dideliu, kitaip mažas, bet neturėtų būti mažesnis nei 5, kad būtų taikomas t-testas.
  • Mėginių vertės turi būti paimtos ir užregistruojamos tiksliai.

Bandymo statistika yra:


x ̅ yra mėginio vidurkis
s yra mėginio standartinis nuokrypis
n yra mėginio dydis
μ yra gyventojų vidurkis

Suporuotas t-testas : Statistinis testas, taikomas, kai abu mėginiai yra priklausomi, ir atliekami poriniai stebėjimai.

Z bandymo apibrėžimas

Z-testas yra vienalytė statistinė analizė, naudojama siekiant ištirti hipotezę, kad dviejų nepriklausomų mėginių proporcijos labai skiriasi. Jis nustato, kokiu mastu duomenų taškas neatitinka duomenų vidurkio standartiniame nuokrypyje.

Tyrėjas priima z-testą, kai žinoma populiacijos dispersija, iš esmės, kai yra didelis mėginio dydis, laikoma, kad mėginio dispersija yra maždaug lygi populiacijos dispersijai. Tokiu būdu daroma prielaida, kad yra žinoma, nepaisant to, kad yra tik mėginių duomenys, todėl gali būti taikomas normalus bandymas.

Z bandymo prielaidos :

  • Visi mėginių stebėjimai yra nepriklausomi
  • Mėginio dydis turėtų būti didesnis nei 30. \ T
  • Z pasiskirstymas yra normalus, vidutinis nulis ir dispersija 1.

Bandymo statistika yra:


x ̅ yra mėginio vidurkis
σ yra populiacijos standartinis nuokrypis
n yra mėginio dydis
μ yra gyventojų vidurkis

Pagrindiniai skirtumai tarp T-testo ir Z-testo

T-testo ir z-testo skirtumas gali būti aiškiai matomas dėl šių priežasčių:

  1. T-testas gali būti suprantamas kaip statistinis testas, naudojamas lyginti ir analizuoti, ar dviejų populiacijų priemonės skiriasi viena nuo kitos, ar ne, kai standartinis nuokrypis nėra žinomas. Kaip ir priešingai, Z-testas yra parametrinis bandymas, kuris taikomas, kai žinomas standartinis nuokrypis, siekiant nustatyti, ar abiejų duomenų rinkinių priemonės skiriasi viena nuo kitos.
  2. T-testas grindžiamas Studentų t-pasiskirstymu. Atvirkščiai, z-testas remiasi prielaida, kad mėginių ėmimo priemonių pasiskirstymas yra normalus. Tiek studento t pasiskirstymas, tiek normalus pasiskirstymas yra panašūs, nes abu yra simetriški ir varpiniai. Tačiau jie skiriasi tuo, kad t-pasiskirstyme centre yra mažiau vietos ir uodegos.
  3. Viena svarbiausių sąlygų t-testui priimti yra ta, kad populiacijos dispersija yra nežinoma. Priešingai, z-testo atveju populiacijos dispersija turėtų būti žinoma arba žinoma.
  4. Z-testas naudojamas, kai mėginio dydis yra didelis, ty n> 30, o t-testas yra tinkamas, kai mėginio dydis yra mažas, ty n <30.

Išvada

Apskritai, t-testas ir z-testas yra beveik panašūs bandymai, tačiau jų taikymo sąlygos yra skirtingos, o tai reiškia, kad t-testas yra tinkamas, kai mėginio dydis neviršija 30 vienetų. Tačiau, jei jis yra didesnis nei 30 vienetų, reikia atlikti z-testą. Panašiai yra ir kitų sąlygų, dėl kurių aišku, kad koks testas turi būti atliekamas konkrečioje situacijoje.

Top